
ICON FONTSICON FONTSICON FONTS
HOORAYHOORAYHOORAY

james williamson | lynda.com

Hello.

I’m James Williamson

@jameswillweb on the Twitter

 | senior author

Let’s talk about icons

“Icons are little miracle workers. They
circumvent language obstacles, give

concise warnings and directions, convey our
moods and show which buttons to press.”

-John Hicks

Icons give us a shared language

This is extremely valuable in the
mobile/responsive context

As screen real estate shrinks, icons give
us a way to clearly communicate ideas,

actions, and instructions to our users
with a minimal footprint.

How do we display icons?

Images
High overhead, painful to maintain, resolution dependent

CSS Sprites
Lower overhead, difficult to create, resolution dependent

SVG
Scalable, style-able, good support, higher overhead

We need more responsive solutions

Responsive icon needs

We need icons that scale independently of resolution

We need icons that can be styled through CSS

We need icons that are small in file size

We need icons that can be downloaded in a single file
to reduce server requests

ICON FONTS allow us to do all those things!

(Actually, this is not exactly a new idea)

Using fonts for icons in our UI

Pros:
Scalable
Single file request
Styles with CSS
Well-supported

Cons:
Monochromatic
Tricky to make
Accessibility issues
Can be tricky to control

Icon font options

Go grab one of the dozens of high-quality, open-source
icon fonts available online

Purchase a commercial icon font

Use an icon-font hosting service like Pictos

Build your own

Using existing icon fonts

Plenty of high-quality, open-source icons available

Many include @font-face kits and code samples

You may not be able to find every icon you need

Dependent upon the icon’s style

Must be careful to avoid bloat

Building your own

Services like the Icomoon, Fontello, & Pictos allow you
to build custom icon fonts

Some allow you to choose the icons you want while
others allow you to upload your own artwork

For greater control, you can use programs like
Illustrator, Inkscape, Glyphs, FontForge, and FontLab to
build your own icon font

Using icon fonts

There are multiple ways to display icon fonts based
on coding standards, font construction, and
accessibility considerations

Despite the differences in implementations, best
practices are starting to emerge regarding icon font
syntax...

Icons mapped to Basic Latin

HTML
<p><span	
 class=“icon”>q	
 Brad	
 Frost	

loves	
 QR	
 Codes!</p>

CSS*
.icon	
 {
	
 	
 	
 	
 font-­‐family:	
 “Your	
 Icon	
 Font”;
}

Result: Brad Frost loves QR Codes!

* @font-face is assumed

Icons mapped to Basic Latin

Pros:

Easy to use

No complex CSS

Single rule drives all
icons

Cons:

Accessibility

Confuses the robots

Falls back to a letter that
has no business being
there

PUA and common symbol encoding

Unicode includes several Private Use values that are
not reserved for specific languages or characters

The Basic Multilingual Plane includes 6,400 code
points and is widely used for icon font encoding

PUA encoded glyphs will fallback to an empty glyph
if the font fails or if @font-face is not supported

BMP encoding runs from E000 - F8FF

You can also use Unicode values that map to common
symbols as a fallback

Unicode mapping & generated content

HTML
<p	
 class=“icon-­‐heart”>I	
 love	
 icons!</p>

CSS*
.icon-­‐heart:before	
 {
	
 	
 	
 	
 font-­‐family:	
 “Your	
 Icon	
 Font”;
	
 	
 	
 	
 content:	
 “\2661”;
	
 	
 	
 	
 display:	
 inline-­‐block;
}

Result: I love icons!

* @font-face is assumed

Demo

Using generated content

Pros:

Leaves content
untouched

You can use common
unicode values for
symbols as fallbacks

PUA unicode values
will fallback to an
empty glyph

Cons:

Unicode mapping can
be hard to remember

Unless you create your
own, unicode mapping
might not meet your
requirements

Making it class-based
bloats CSS

Unicode mapping & generated content

Using the data-icon attribute

HTML
<p	
 data-­‐icon=“♡”>I	
 love	
 icons!</p>

CSS*
*[data-­‐icon]:before	
 {
	
 	
 	
 	
 font-­‐family:	
 “Your	
 Icon	
 Font”;
	
 	
 	
 	
 content:	
 attr(data-­‐icon);
	
 	
 	
 	
 display:	
 inline-­‐block;
}

Result: I love icons!

* @font-face is assumed

Demo

Using the data-icon attribute

Pros:

Nice and semantic

No need to use extra
classes

Cons:

Not as human readable

Using the data-icon attribute

...hold up though!

Using generated content with data-icon still leaves us
with accessibility issues.

Generated content will still be read by screen
readers.

Which could be awkward.

Using the aria-hidden attribute

HTML
<p><span	
 data-­‐icon=“”	
 aria-­‐hidden=“true”>	

I	
 love	
 icons!</p>

CSS*
*[data-­‐icon]:before	
 {
	
 	
 	
 	
 font-­‐family:	
 “Your	
 Icon	
 Font”;
	
 	
 	
 	
 content:	
 attr(data-­‐icon);
	
 	
 	
 	
 display:	
 inline-­‐block;
	
 	
 	
 	
 speak:	
 none;
}

Result: I love icons!

* @font-face is assumed

Demo

The still even-more awesome way to accessibly
use generated content & data-icon

Pros:

Semantically clean

Well supported

Creates purely
visual content

Cons:

Requires extra markup

OK, none really...

Using the aria-hidden attribute

Using ligatures for icon fonts

HTML
<p><span	
 class=“icon”>twitter	
 Tweet	

that!</p>

CSS*
.icon	
 {
	
 	
 	
 	
 font-­‐family:	
 “ligature	
 icons”;
	
 	
 	
 	
 text-­‐rendering:	
 	
 optimizeLegibility;
}

Result: Tweet that!

* @font-face is assumed

Pros:

Easy to use

Falls back to
meaningful text

If the font is mapped
correctly you can
combine techniques

Cons:

Must use a ligature-
mapped icon font

Extra text in content can
be weird

Ligature support is
uneven

Using ligatures for icon fonts

Multicolor Icon Fonts
HTML

<p><span	
 data-­‐icon=""	
 class="maps	

multi"><span	
 data-­‐icon=""></p>

CSS*
span.multi	
 {
	
 position:	
 relative;
}
span.multi	
 span	
 {
	
 position:	
 absolute;
	
 top:0;
	
 left:0;
}

Result:
* @font-face is assumed

Demo

Taking icon fonts further with multicolor icons

Pros:

Versatile

Confuses people that
say you can’t do it

Cons:

Icon font must be built
with multicolor pieces
included

Requires extra markup

Using multicolor icon fonts

Tips for displaying icon fonts

Normalize them
 font-weight, font-style, font-variant, text-transform...

Using inline-block gives you more control
 also ensures ‘click-ability’

Although scalable, not every size displays great
 try to scale along the font’s design grid

Base64 encode your fonts
 avoids cross-domain Firefox issues

Tips for displaying icon fonts

Use text-rendering: optimizeLegibility for ligatures
 also enables kerning pairs

Use -webkit-font-smoothing: antialiased &
-moz-osx-font-smoothing: grayscale;
 makes icons crisper in webkit/gecko browsers

Use vertical-align to control baselines on inline icons
 not all icon fonts will align to the baseline the same

Wait a minute...

I heard that we shouldn’t use Icon Fonts!

Filament Group suggests you use SVG

Lonely Planet & Chis Coyier just switched to SVG!

SVG is pretty awesome

Native vector artwork

Built-in support for multiple colors

Accessible through the DOM

Can do cool things like animating separate parts

More styling options through CSS

...but it’s not all roses

No support IE8>, Android 2.3 & earlier

Inline SVG eliminates extra requests, but bloats code and
must be dynamically inserted to be efficient

Complex assembly without build processes like Grunticon

Likewise for fallbacks

Higher overhead than Icon Fonts

What about icon font support?

No Opera Mini

No Windows Phone 7 - 7.8

No Android 2.1

No BlackBerry 4&5 stock browser

Edge cases in most cases, but worthy of having fallback
strategies in place

So wait, which is better?

Icon Fonts are not right for every project.
Before using icon fonts or an icon font

service, make sure you have a strategy in
place that matches your code aesthetics.

Icon Font Resources
Chris Coyier’s Big List of Icon Fonts

http://css-tricks.com/flat-icons-icon-fonts/

Interactive Unicode Table
http://unicode-table.com

Icomoon
http://icomoon.io

Github: Building Octicons
https://github.com/blog/1135-the-making-of-octicons

Filament Group’s Icon Font Compatibility Table
https://docs.google.com/spreadsheet/ccc?
key=0Ag5_yGvxpINRdHFYeUJPNnZMWUZKR2ItMEpRTXZPdUE#gid=0

Want these slides?
http://www.slideshare.net/jameswillweb

http://css-tricks.com/flat-icons-icon-fonts/
http://css-tricks.com/flat-icons-icon-fonts/
http://unicode-table.com
http://unicode-table.com
http://icomoon.io
http://icomoon.io
https://github.com/blog/1135-the-making-of-octicons
https://github.com/blog/1135-the-making-of-octicons
https://docs.google.com/spreadsheet/ccc?key=0Ag5_yGvxpINRdHFYeUJPNnZMWUZKR2ItMEpRTXZPdUE%23gid=0
https://docs.google.com/spreadsheet/ccc?key=0Ag5_yGvxpINRdHFYeUJPNnZMWUZKR2ItMEpRTXZPdUE%23gid=0
https://docs.google.com/spreadsheet/ccc?key=0Ag5_yGvxpINRdHFYeUJPNnZMWUZKR2ItMEpRTXZPdUE%23gid=0
https://docs.google.com/spreadsheet/ccc?key=0Ag5_yGvxpINRdHFYeUJPNnZMWUZKR2ItMEpRTXZPdUE%23gid=0

THANK YOU
james williamson | lynda.com

jwilliamson@lynda.com
@jameswillweb on the Twitter

www.simpleprimate.com

Want these slides?
http://www.slideshare.net/jameswillweb

Want the icon font used in the demos?
http://jameswillweb.github.io/chunky-mobile

mailto:jwilliamson@lynda.com
mailto:jwilliamson@lynda.com
http://www.simpleprimate.com
http://www.simpleprimate.com
http://www.slideshare.net/jameswillweb
http://www.slideshare.net/jameswillweb
http://jameswillweb.github.io/chunky-mobile/
http://jameswillweb.github.io/chunky-mobile/

