
IS FLEXBOX
THE FUTURE OF LAYOUT?

IS FLEXBOX
THE FUTURE OF LAYOUT?

IS FLEXBOX
THE FUTURE OF LAYOUT?

james williamson | lynda.com

Hello.

I’m James Williamson

happy to be here

@jameswillweb on the Twitter

 | senior author

What are we going
to talk about?

Flexbox... and can it fix what’s
wrong with CSS layout?

So wait... what’s wrong
with layout now?

Let’s take a look at the evolution of CSS layout:

no layout
 We just let normal flow do its thing

tables
 For you youngsters.... seriously, we used to do this

box model / positioning / floats / cursing
 Progress! Still, much like tables, we’re still hacking...

Be honest. How many techniques can you
think of, just off the top of your head, for

vertically centering something?

How easy are they?

I rest my case.

Things that should be
simple aren’t

In the flex layout model, the children of a flex container can be laid out in any
direction, and can "flex" their sizes, either growing to fill unused space or
shrinking to avoid overflowing the parent. Both horizontal and vertical
alignment of the children can be easily manipulated. Nesting of these boxes
(horizontal inside vertical, or vertical inside horizontal) can be used to build
layouts in two dimensions.

― CSS Flexible Box Layout Module

Which brings us to Flexbox

What’s so great about
Flexbox?

Some of the high points:

It’s flexible!
I mean, look at the name. You can easily make things
stretch and flex to fit available space

Easy alignment
Horizontal, vertical, baseline... it’s all good.

Source order independence
You want that before this, but only when that? OK.

Easy Syntax
You can learn it in one afternoon.

Sounds awesome! So...is
Flexbox the future of layout?

No.

Thanks for coming.

Sounds awesome! So...is
Flexbox the future of layout?

OK, just kidding (sort of). The

answer is both Yes & No!

pre 2008
CSS Working Group discusses proposing a

Flexible Box Model similar to what is found in

XUL and XAML.

2008 2009 2010 2011 2012

First, a little history...

2009
The Flexible Box Layout Module is published as a working

draft. Chrome and Safari add partial support while Mozilla

support relies on older XUL implementation. The syntax

closely follows XUL flexbox syntax and is often referred to

as “Flexbox 2009.”

2008 2009 2010 2011 2012

First, a little history...

2011
Tab Atkins takes over as editor for the Flexbox Spec and

publishes two working drafts over the course of the

year. These drafts re-write the syntax significantly and

are sometimes referred to as “tweener” syntax. Chrome,

Opera and & IE 10 begin to implement this syntax.

2008 2009 2010 2011 2012

First, a little history...

2012
Syntax is further changed and refined. Spec is now a

Candidate Recommendation. Opera releases

un-prefixed support, Chrome supports the current

syntax in prefixed form, and IE 10 adds prefixed

support for the “tweener” syntax. Mozilla is close to

releasing unprefixed support.

2008 2009 2010 2011 2012

First, a little history...

How does Flexbox work?

Basic concepts:

It’s a new layout mode
Joins block, inline, table, and positioned

Similar to block layout
Containing elements are laid out in a flow direction

Has super powers
Flow direction can be up or down, left or right, display
order can be reversed, elements can “flex” their size to
respond to available space and align to their containers
or other elements

How does Flexbox work?

Basic steps:

Define flex containers
All direct child elements become flex items

Establish flow direction
Flex containers can flow either in a row or column and
can be single or multiline

Go crazy with the cheese whiz
Flex items can now be spaced, flexed, aligned, or
arranged as you see fit within the flow direction

How does Flexbox work?

It’s all about the axis... er axes.

flex itemflex item

flex container

main axis

cross axis

Flexbox syntax*

Defining flex containers

.flex	
 {
	
 display:	
 -­‐webkit-­‐flex;
	
 display:	
 -­‐ms-­‐flexbox;
	
 display:	
 flex;
}

*A note about syntax. I’ll be showing 2012 syntax including webkit
prefixes, IE prefix (“tweener” syntax), and unprefixed syntax. I won’t show
older (2009 syntax) or older -o- and -moz- prefixes

(there’s also an inline-flex variation)

Flexbox syntax

Setting flow direction and line wrap

.flex	
 {
	
 -­‐webkit-­‐flex-­‐flow:	
 <flex	
 direction>	
 |	
 <flex	
 wrap>
	
 -­‐ms-­‐flex-­‐flow:	
 “”
	
 flex-­‐flow:	
 “”
}

You can also set flex-direction and flex-wrap as individual
properties if you wish.

Flexbox syntax

Controlling flex item flexibility

.flex-­‐item	
 {
	
 -­‐webkit-­‐flex:	
 none	
 |<flex-­‐grow>	
 <flex-­‐shrink>||	
 <flex-­‐basis>
	
 -­‐ms-­‐flex:	
 “”
	
 flex:	
 “”
}

I’m not going to lie... this takes some explaining...

Flexbox syntax

Flex: Flex Grow

.flex-­‐item	
 {
	
 -­‐webkit-­‐flex:	
 none	
 |<flex-­‐grow>	
 <flex-­‐shrink>||	
 <flex-­‐basis>
	
 -­‐ms-­‐flex:	
 “”
	
 flex:	
 “”
}

<number> Represents how much the flex item will grow relative to the
rest of the flex items in the container once positive space has been
distributed. If left out, it defaults to ‘1’

Flexbox syntax

Flex: Flex Shrink

.flex-­‐item	
 {
	
 -­‐webkit-­‐flex:	
 none	
 |<flex-­‐grow>	
 <flex-­‐shrink>||	
 <flex-­‐basis>
	
 -­‐ms-­‐flex:	
 “”
	
 flex:	
 “”
}

<number> Represents how much the flex item will shrink relative to
the rest of the flex items in the container once negative space has been
distributed. If left out, it defaults to ‘1’

Flexbox syntax

Flex: Flex Basis

.flex-­‐item	
 {
	
 -­‐webkit-­‐flex:	
 none	
 |<flex-­‐grow>	
 <flex-­‐shrink>||	
 <flex-­‐basis>
	
 -­‐ms-­‐flex:	
 “”
	
 flex:	
 “”
}

auto | <width> Represents the initial main size of a flex item, before
free space is distributed. When omitted, it defaults to ‘0’

Flexbox syntax

Common Flex Values

Flex: 0 auto, initial
Equates to 0 1 auto. Sizes items based on width/height values. Item is inflexible but is
allowed to shrink to its min value

Flex: auto
Equates to 1 1 auto. Sizes items based on width/height values, but makes them fully
flexible to grow or shrink based on available space

Flex: none
Equates to 0 0 auto. Sizes items based on width/height values, but makes the item
totally inflexible.

Flex: <positive number>
Equates to <value> 1 0px. Makes the item flexible and sets the basis to 0. This
ensures the item receives the specified portion of free space available.

Flexbox syntax

Controlling display order

.flex-­‐item	
 {
	
 -­‐webkit-­‐order:	
 <integer>
	
 -­‐ms-­‐flex-­‐order:	
 “”
	
 order:	
 “”
}

Values start at ‘0’ and increments up. A negative value is displayed
before positive values. You can also reverse row and column direction.

Flexbox syntax

Controlling main axis alignment

.flex	
 {
-­‐webkit-­‐justify-­‐content:	
 flex-­‐start	
 |	
 flex-­‐end	
 |	
 center	
 |	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 space-­‐between	
 |	
 space-­‐around
-­‐ms-­‐flex-­‐pack:	
 start	
 |	
 end	
 |	
 center	
 |	
 justify

justify-­‐content:””
}

Axis alignment is performed after flexible lengths and auto margins
have been resolved.

Flexbox syntax

Controlling cross axis alignment

.flex	
 {
-­‐webkit-­‐align-­‐items:	
 flex-­‐start	
 |	
 flex-­‐end	
 |	
 center	
 |	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 baseline	
 |	
 stretch
-­‐ms-­‐flex-­‐align:	
 start	
 |	
 end	
 |	
 center	
 |	
 baseline	
 |	
 stretch

justify-­‐content:””
}

Align-items applies to all flex items in a container. To align a single item,
you can use the align-self property to a flex item and use the same values.

Flexbox syntax

Aligning multiple flex lines

.flex	
 {
-­‐webkit-­‐align-­‐content:	
 flex-­‐start	
 |	
 flex-­‐end	
 |	
 center	
 |	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 space-­‐between	
 |	
 space-­‐around	
 |	
 stretch
-­‐ms-­‐flex-­‐line-­‐pack:	
 start	
 |	
 end	
 |	
 center	
 |	
 justify	
 |	
 distribute	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 |	
 stretch
align-­‐content:””	
 }

Aligns multiple flex lines within a flex container. Has no effect on single
line flex containers.

Fantastic

Let’s take it for a spin.

SP

Demo Time

If you’re viewing this slide deck later,
this is where the cool stuff happened.

Sorry.

SP

Demo take-aways

Some things to remember:

Don’t overuse it
Let normal flow do the work where it makes sense

Think through your structure carefully
Defining regions and re-ordering content properly
does rely on structure, think these things through

Understand flex-basis
Knowing how an element’s main and cross size’s are
determined is crucial to achieving expected results

Don’t forget your margins
When setting alignments along axes, margins are taken
into account. Also, flex item margins don’t collapse.

So... how’s support?

Browser

Firefox

Google	
 Chrome

Safari

Opera

Internet	
 Explorer

iOS	
 Safari

Opera	
 Mini

Opera	
 Mobile

Android	
 Browser

Blackberry	
 Browser

support

2.0+

22+

5.1+

12.1+

10+

3.2

5	
 -­‐	
 7

12.0+

2.1

10+

notes

new	
 syntax	
 unprefixed	
 in	
 nightly

with	
 -­‐webkit-­‐	
 prefix

-­‐ms-­‐	
 prefix,	
 uses	
 tweener	
 syntax

2009	
 syntax

2009	
 syntax,	
 -­‐webkit-­‐	
 prefix

Wait....	
 what?

2012	
 syntax	
 supported

2009	
 syntax

nada

(as of 12-05-12)

So wait... is it the future or not?

Of course... along with other emerging models

It’s great at 1D, OK at 2D
This makes Flexbox a great choice for UI elements,
application interfaces, and aligning/flexing items in
specific page regions

It’s not great at 3D or across page regions
CSS Grid Layout is a better choice for that

So what will we probably see?
Eventually I see Flexbox being used in conjunction with
other layout models to exact finer-grain control over
responsive elements

Go learn you some Flexbox
Go read the spec:

http://www.w3.org/TR/css3-flexbox/

Browser support:
http://caniuse.com/flexbox

Using Flexbox:
https://developer.mozilla.org/en-US/docs/CSS/Using_CSS_flexible_boxes

Layout Nirvana?
http://dev.opera.com/articles/view/flexbox-basics/

Flexbox Please!
http://demo.agektmr.com/flexbox/

Want these slides?
http://www.slideshare.net/jameswillweb/presentations

http://www.w3.org/TR/css3-flexbox/
http://www.w3.org/TR/css3-flexbox/
http://caniuse.com/flexbox
http://caniuse.com/flexbox
https://developer.mozilla.org/en-US/docs/CSS/Using_CSS_flexible_boxes
https://developer.mozilla.org/en-US/docs/CSS/Using_CSS_flexible_boxes
http://dev.opera.com/articles/view/flexbox-basics/
http://dev.opera.com/articles/view/flexbox-basics/
http://demo.agektmr.com/flexbox/
http://demo.agektmr.com/flexbox/

THANK YOUTHANK YOU
james williamson | lynda.com

jwilliamson@lynda.com
@jameswillweb on the Twitter

www.simpleprimate.com

mailto:jwilliamson@lynda.com
mailto:jwilliamson@lynda.com
http://www.simpleprimate.com
http://www.simpleprimate.com

